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Abstract 
 
The demise of the Mars Orbiter and Mars Polar Lander 
missions has highlighted the criticality of software 
reliability for Mars missions. In both cases, problems 
manifested themselves at the software level, even if the 
causes are to be found somewhere else (e.g., design 
process). Therefore, it is fair to assume that many 
problems could be caught during software verification 
provided that one uses the right tools and looks for the 
right types of errors. In this paper, we describe a study in 
which we apply this theory to the flight software of a 
current mission, i.e., the Mars Exploration Rover mission 
(MER). The study consists of applying a static analysis 
tool to the MER code to identify runtime  errors, such as 
un-initialized variables, out-of-bound array accesses, and 
arithmetic overflows and underflows. The goal is both to 
demonstrate the usefulness of formal methods in a real 
software development context, and more importantly, to 
participate in the verification of the code that will fly 
during this mission. The work was conducted by a tool 
expert and a code expert. All identified problems were 
passed on to the appropriate developers. This paper 
describes the setup of the study, the findings, and 
proposals for integrating such a tool in a software 
development process. It also includes illustrative 
examples of the problems found by the analysis. 

 
 
 
1. Introduction 
 

Designing reliable software systems is a critical need 
for NASA. The result of a software fault ranges from 
losing a day of science data (as in the Mars Path Finder, 
MPF) to the loss of an entire mission (e.g., Mars Polar 
Lander, MPL). Losing an entire mission results in 
wasting precious time in scientific experiments; e.g., one 
has to wait two years to find another suitable launch 
window for Mars, but it takes at least three years to 
prepare hardware and software for a new mission. The 
financial impact is also significant; e.g., a rover mission 
to Mars costs a minimum of $250 million dollars. It is 
easy to see why NASA has a vested interest in increasing 
the reliability of its critical software systems. 

In general, the software development process depends 
greatly on the current flight software manager. However, 
the verification and validation process (V&V) is more or 
less the same across missions. It consists of some unit 
testing performed by the developers themselves, and then 
a series of system integration tests using different levels 
of simulation. For some missions, the actual hardware 
was preferred to even a high-fidelity testbed. We are not 
aware of the use of any formal methods in the V&V 
process. In some sense, one can say that the validation 
aspect takes precedence over the verification aspect. Our 
overall goal is to try to convince mission developers that 
significant reliability gains can be obtained by inserting 
some formal methods in the V&V process. 

For such a demonstration to be effective, it needs to be 
conducted on real code with real errors. Then, one has a 
chance to convince developers that automated tools based 
on formal methods can identify cases that elude any 
tester. For this particular experiment, we chose to 
concentrate on one technique (i.e., static analysis, and 
more specifically, static analysis based on abstract 
interpretation) and one specific class of errors (runtime 
errors such as out-of-bound array accesses, un-initialized 
variables, arithmetic overflows and underflows, and so 
on). We applied this technique to the flight software 
system of the Mars Exploration Rover mission. Note that 
the goal is not to realize a statistically meaningful study, 
but to demonstrate the usefulness of current static 
analysis. 

 
 
2. Static Analysis 
 

The goal of static analysis is to assess code properties 
without executing the code. Several techniques can be 
used to perform static analysis, such as theorem proving, 
data flow analysis [1], constraint solving [2], and abstract 
interpretation [3,4]. For this experiment, we use a tool, 
called PolySpace C-Verifier [5], which is based on 
abstract interpretation. 

 
 
2.1. Overview 
 

The theory of Abstract Interpretation pioneered by 
Patrick and Radhia Cousot in the mid 70's provides 



algorithms for building program analyzers which can 
detect all runtime errors by exploring the text of the 
program [3,4]. The program is not executed and no test 
case is needed. A program analyzer based on Abstract 
Interpretation is a kind of theorem prover that infers 
properties about the execution of the program from its 
text (the source code) and a formal specification of the 
semantics of the language (which is built in the analyzer). 
The fundamental result of Abstract Interpretation is that 
program analyzers obtained by following the formal 
framework defined by Patrick and Radhia Cousot are 
guaranteed to cover all possible execution paths.  

Runtime errors are errors that cause exceptions at 
runtime. Typically, in C, either they result in creating core 
files or they cause data corruption that may cause crashes. 
In this study we mostly looked for the following runtime 
errors: 

• Access to un-initialized variables (NIV) 
• Access to un-initialized pointers (NIP) 
• Out-of-bound array access (OBA) 
• Arithmetic underflow/overflow (OVF) 
• Invalid arithmetic operations (e.g., dividing by 

zero or taking the square root of a negative 
number) (IAO) 

• Non-terminating loops (NTL) 
• Non-terminating calls (NTC) 
The price to pay for exhaustive coverage is 

incompleteness: the analyzer can raise false alarms on 
some operations that are actually safe. However, if the 
analyzer deems an operation safe, then this property holds 
for all possible execution paths. The program analyzer 
can also detect certain runtime errors which occur every 
time the execution reaches some point in the program. 
Therefore, there are basically two complementary uses of 
a program analyzer: 

• as a debugger that detects runtime errors 
statically without executing the program, 

• as a preprocessor that reduces the number of 
potentially dangerous operations that have to be 
checked by a traditional validation process (code 
reviewing, test writing, and so on). 

For the second use the tool should achieve a good 
selectivity - the percentage of operations which are 
proven to be safe by the program analyzer. Indeed, if 80% 
of all operations in the program are marked as potentially 
dangerous by the analyzer, there are no benefits to using 
such techniques. 

 
 
2.2. PolySpace C-Verifier 
 

PolySpace C-Verifier is the first tool implementing 
Abstract Interpretation techniques that is able to scale up 
to software systems of industrial size. This tool takes an 

ISO-compliant piece of C code and performs static 
analysis using sophisticated Abstract Interpretation 
algorithms. The result is the program in which all 
potentially dangerous operations have been assigned a 
color: 

• Green the operation is safe, no runtime error can 
occur at this point 

• Red a runtime error occurs whenever the 
operation is executed 

• Black the operation is unreachable (dead code) 
• Orange the operation is potentially dangerous 

(runtime error or false alarm). 
PolySpace C-Verifier achieves a fairly good selectivity, 
since in practice no more than 20% of operations are 
marked as orange. In this paper we focus mostly on the 
operations that are marked as red by the analyzer. It 
means that we use the analyzer as an "abstract debugger" 
which points out errors without running the program. 
 
3. Code Preparation 
 

Ideally, a verification tool should accept code as it is 
written by the developer. However, it is not necessarily 
the case in practice. The code always has to be massaged 
a little before it goes through. We first give an overview 
of the MER code, and then we describe the modifications 
we made to accommodate the analysis. 

 
3.1. MER Code Structure 
 

In this section, we give a high-level view of the MER 
code.  MPF was a successful mission, and therefore, its 
code has been used as a base for developing the code for 
other missions such as Deep Space One, DS1, and MER. 
The software is built on top of the VxWorks operating 
system. All MPF-derived code we analyzed is organized 
as follows.  

The code is multi-threaded. All threads are created 
during an initialization phase, but they are activated only 
when needed. For example, there is no need to activate 
the EDL (Entry, Descent, and Landing) thread before the 
end of the cruise phase. Threads communicate through 
message passing using mechanisms given by the 
VxWorks OS. Each request message provides the name 
of a callback routine to return results. There are more than 
100 tasks in MER. 

In general, the software keeps two logs during 
computations. One stores scientific data, while the other 
keeps track of the safe operation of the system in terms of 
event sequences. The logging rate depends on the storage 
capacity, the criticality of the current computations, and 
the bandwidth available to send these data to ground 
control.  



State, and critical, information is stored in fairly 
shallow data structures which are allocated during the 
initialization phase. Typically, these data structures are 
arrays (they represent the matrices that are used for 
controlling the spacecraft), or records whose fields may 
be arrays. These data structure have a nested depth of two 
or three, which is why we refer to them as fairly shallow. 

 
 
3.2. Code Modifications 
 

The first modification is due to detecting errors. These 
errors most often come from the compilation phase. 
Indeed, PolySpace Verifier checks for strict ISO 
standards, when traditional compilers are more 
permissive. Sometimes (and hopefully) errors are 
discovered by the analysis, and they need to be fixed 
before the analysis can be run again. In both cases, these 
code modifications are necessary. 

The second type of modifications comes from 
scalability problems. Big software systems have to be 
divided into pieces ranging from 20 KLOCS to 40 
KLOCS. Sometimes this decomposition is natural 
because of the modularity of the code, sometimes it is not 
obvious. Stubs for the environment may have to be 
written.  

The third type of modifications is due to the tool 
limitations. For example, the tool assumes a true 
concurrency models in which all threads are started as 
soon as the main ends; this resulted in minimal 
modifications. Basically, we wrote a main program that 
performed the initialization needed by the modules we 
analyzed. The Mars code uses quite a bit of function 
pointers, and the tool could not always resolve those. In 
these cases, the code had to be carefully modified to 
ensure the validity of the results. 

 
 
4. Analysis Results 
 

In this section, we describe the results we obtain 
during the experiments. All analyses were conducted 
using the PolySpace Verifier on a PC (running Linux) 
using a 2 MHz CPU and 2 GB of memory. In a 
subsequent section, we give approximate performance 
figures. First, we describe the types of errors we 
encountered. Obviously we cannot mention all the errors 
we found and their exact description. Finally we give 
performance figures. 
 
4.1. Results 
 

The MER code suffered essentially from NIV 
problems. We mention only the following one because it 
will lead to an interesting discussion in the next section. 
 
void getData (T* p) { 
   ... 
   if (flag == TRUE) { 
       ... 
       p->data = ...; 
       p->status = 1; 
       ... 
   } 
   else { 
       sendEvrMsg(“data unavailable”); 
   } 
} 
 
It is obvious that the getData routine can exit without 
setting the contents of the structure passed as an 
argument. 
Therefore, the tool flagged numerous uses of variables 
passed to getData when their data field was accessed. 
Note that the status field in type T is there to tell if the 
data is available or not. So, every access to this structure 
should be preceded by a test of the status field. It was not 
the case in the version we analyzed. However, even if it 
were the case, we would have had an error on the test of 
the status field unless it had been set to a default value at 
initialization. 

Our final error example was caught very quickly by 
the tool. In fact, it was caught during the compilation 
phase without requiring running any analysis algorithm. 
In this case the tool noticed that the address of a local 
variable was returned.  
 
int foo(...) { 
    int var; 
    ... 
    var = ...; 
    ... 
    return &var;----------- 
} 

 
 
4.2. Performance 
 

There are usually two problems with using static 
analysis on real programs. First, static analysis tools have 
trouble scaling to large software systems (100 KLOCS 
and up). Second, static analysis is usually conservative 
(all execution paths are covered), and this results in the 
generation of many false alarms. We now discuss both 
aspects based on our experience. 

PolySpace Verifier was originally conceived for Ada 
programs. It seems that it scales well for such programs 
(over 1 Million LOCS). Unfortunately, the code we 
analyzed was written in C, and was too large (more than 



650 BLOCS) for the tool. We experienced a limitation of 
about 40 KLOCS given the type of algorithmic and 
structure complexity present in the MER code. To get 
around this scalability problem, we divided the code into 
modules ranging from 20 KLOCS to 40 KLOCS. We 
intentionally kept complicated modules close to 20 
KLOCS so that we could obtain decent precision. This 
means that the rest of the program was stubbed. In 
general, we chose to stub utility modules that implement 
the ``plumbing'' of the system (i.e., communication layer, 
file I/O, and so on). We concentrated our analyses on the 
critical modules and on modules that were either 
significantly different from the MPF code or new. Our 
reasoning here is that utility modules are often inherited 
without modifications from one mission to the next. 
Critical components such as the attitude control module 
are usually one of a kind. 

We measure precision (also called selectivity by 
PolySpace) of the analysis in terms of the distribution of 
the safety checks performed by the tools. Thus, our 
precision measure is given by the following formula: 
 

precision = (G + R + U) / (G + R + U + O) 
 
where G is the number of checks deemed safe (Green), R 
the number of unsafe (Red) checks, U the number of 
unreachable checks, and O the number of potentially 
unsafe (Orange) checks. Throughout our experiments, we 
obtain a precision ranging from 80% to 90%. This means 
that between 10% and 20% of the checks have to be 
classified using other methods (manual inspection, 
testing, or other technique). This was quite satisfactory, 
but it appears to be still a deterrent for developers at 
NASA. This is understandable when one considers that 
even a small MER module of only 30 KLOCS can 
generate about 5000 checks; hence, more than 500 checks 
still have to be verified through other means. Such high 
numbers usually scare developers away from using this 
type of tools. In the next section, we suggest other ways 
of using the tool. Note that the current research on static 
analysis based on abstract interpretation shows that the 
next generation of tools might achieve near 100% 
precision. For example, Cousot et al. analyzed 10 
KLOCS of Airbus code with 100% precision [6]. 

The time needed to run an analysis is also another 
important aspect that developers worry about: the shorter 
the analysis time, the more likely the tool will be used. In 
our study, analysis time was often a problem (especially 
with early versions of the tool). PolySpace Verifier 
offered essentially two modes of analysis. The first one is 
quick (about 30 minutes of analysis time), and it does not 
offer much precision. It is intended to catch obvious 
errors before committing to analyses with higher degrees 
of precision. As the previous section showed, this phase 
still catches errors despite its relative simplicity. The error 

about returning a local address was caught during a quick 
analysis. So, this analysis has its place to weed obvious 
errors. In general, each subsequent analysis pass took 
about one hour for the size of modules we analyzed. Note 
that, each pass builds on top of the results of the previous 
pass. Since in general after three passes we saw no 
precision improvement anymore, one can say that a 
precise analysis requires on average three hours. 
Therefore, the tool was used mostly in a batch mode 
rather than an interactive mode. 

 
 
5. Lessons Learned 
 

In this section, we discuss how to make the most 
efficient use of static analysis. We emphasize two aspects. 
First, we give hints about what coding practice will 
facilitate static analysis, and therefore, will lead to 
verifiable code. Second, we discuss the place of static 
analysis in the development process. 
 
5.1. Coding for Static Analysis 
 

Developers need to adapt their coding habits so that 
their programs can be analyzed more easily, and more 
precisely, using static analysis. In this section, we point to 
some examples of coding practice that should be avoided. 

One of the trickiest coding practice we had to analyze 
is the use of function pointers. In the Mars code, this 
practice appears in two places when a command is issued. 
The code is organized in such a way that requests for 
services (in other words control commands) are issued 
using messages. These messages are handled by a module 
that consists of a loop that performs some action 
depending on the type of the message. In order to keep 
messages generic, pointers to the routine that will perform 
the service are passed in the message. This pointer 
corresponds to an entry in a table of service routines. 
However, since the alias algorithm does not distinguish 
among elements of an array, the analyzer considers that 
all service routines can be called. This results in 
significant approximations. Moreover, the 
acknowledgment that a service has been performed is 
implemented through the use of callback routine handles 
given in the message requesting the service. Once again, 
this is a source of approximations. 

Another dangerous practice consists of re-using blocks 
of allocated memory and overlaying different types of 
data structures over these blocks. This is a common 
practice in embedded systems. Memory allocation is 
considered a source of unpredictability. Therefore, it is 
only done during an initialization phase. Initially 
allocated blocks are then re-used by the program as 
needed. For example, in MER, messages are implemented 
using this scheme. Problems arise when blocks are used 



sometimes as blocks of integers or sometimes as blocks of 
floats. Worse, sometimes block of integers hide addresses 
(that have been cast as integers). This coding practice 
may be convenient for embedded systems, but it confuses 
static analyzers which cannot rely on a clean, consistent 
type system. 

Finally, we would like to come back to one of the 
errors we found. Recall that a data structure had two 
fields, one holding data values and the other giving a 
status on the availability, or validity, of the data. The 
error was that the data field was accessed without being 
set. The proper use of this coding construct is that the 
status flag should always been set by the routines that 
may write in the data field, and the use of the data field in 
other routines should always be protected by a test on the 
flag as follows: 
 
... 
if (p->status == VALID) { 
   data = p->data; 
   ... 
} 
... 
 

From a static analysis point of view, it is difficult to 
track the value of the status flag. Therefore, the use of the 
data field will always be flagged as an orange even 
though the code is absolutely correct. This example is 
typical of cases where a static analyzer needs to be able to 
recognize safe coding patterns. Another solution would 
consist of providing annotations. However, we do not 
recommend such solutions since potential users are 
generally averse to writing annotations, especially in 
development environments with stringent time 
constraints. 

 
 
5.2. Using Static Analysis 
 

The final point we wish to address is when static 
analysis should be used. Does it belong in development 
phases or unit testing or system integration? Where is it 
the most effective? To answer this question, we will rely 
on the traditional V diagram representing software 
lifecycle as shown in Figure 1. 

We recommend the use of static analysis from the 
Software Detailed Design phase to the Software 
Integration phase if possible. Current static analysis tools 
can be applied without any problem from Software 
Coding to Software Unit testing. Current scalability 
problems prevent their full use in the Software Integration 
phase.  

• Software Coding: Static analyzers can be used 
as sophisticated compilers because they perform 
stricter checks with respect to the ISO standard 
and they use  advanced alias algorithms. They 

can also be used as abstract debuggers in this 
phase.  

• Software Unit Testing: This is the phase in 
which current analyzers will perform at their 
best. Units can be verified for a wide range of 
inputs for a low cost. 

• Software Integration: This is currently beyond 
the reach of commercial static analyzers. They 
cannot scale to full size systems and deliver 
enough precision. However, they can still be 
used as abstract debuggers in this phase.  

 

 
 
The use of static analyzers as debuggers is interesting; 

it provides a new way to approach oranges (false alarms). 
Basically it works as follows. All red errors (unsafe 
checks) are of course corrected. Then, only some oranges 
are analyzed. Based on previous experiences, one might 
decide to look for certain types of oranges (e.g., NIV 
errors). Another approach is to look for isolated oranges. 
It is rare that analysis approximations lead to isolated 
oranges. It usually leads to a cluster of orange checks. So, 
an isolated orange might be the sign of a deeper problem. 
Whatever selection criterion is used, the main point is that 
not all oranges are being checked manually. Only those 
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that have a serious potential for being true errors (which 
is determined empirically) are studied. 
 
 
6. Conclusions 
 

In this paper we have presented the results of a study 
in which a static analysis tool was applied to real NASA 
mission code (i.e., modules of the flight software for 
Mars Exploration Rover). The main results are as follows. 

• Current commercial analyzers do not scale to 
software systems of more than 40 KLOCS. 

• They are still useful to find errors since we 
found errors in real mission code. 

• The rate of false alarms has been found to be 
between 10% and 20%. 

• Some coding constructs should be avoided in 
order to make a more efficient use of static 
analyzers. 

• Aliasing is definitely a bottleneck in terms of 
precision and scalability. 

• Static analyzers can be extremely useful when 
used as abstract debuggers rather than 
certification tools. 

The goal of this study was to identify the current 
strengths and weaknesses of static analysis when it is 
applied to real critical software (as it is built at NASA). 
Based on this experiment, it is our belief that current 
weaknesses (namely scalability and precision) can be 
addressed by building specialized static analyzers that are 
dedicated to specific software families. To prove our 
point, we are currently ongoing the design of such a 
specialized analyzer for the NASA software systems 
following the Mars Path Finder legacy. 
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